Modelling and evaluation of light railway system’s noise using neural predictors

نویسندگان

  • Selçuk Erkaya
  • Abdurrahman Geymen
  • Bülent Bostancı
چکیده

BACKGROUND Noise is defined as a sound or series of sounds that are considered to be invasive, irritating, objectionable and disruptive to the quality of daily life. Noise is one of the environmental pollutants, and in cities it is usually originated from road traffic, railway traffic, airports, industry etc. The tram is generally considered as environmentally friendly, namely non-polluting and silent. However complaints from residents living along the tramway lines prove that it may sometimes cause annoyance. In this study, a Global Pointing System (GPS) receiver for determining the sampling locations and a frequency based noise measurement system for collecting the noise data are used to analyse the noise level in the city centre. Both environmental (background) and tram noises are measured. RESULTS Three types of neural networks are used to predict the noises of the tram and environment. The results of three approaches indicate that the proposed neural network with Radial Basis Function (RBF) has superior performance to predict the noises of the tram and environment. CONCLUSIONS For making a decision about transportation planning, this network model can help urban planners for evaluating and/or isolating the tram noise in terms of human health.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatial modelling of railway noise propagation

In recent decades, population growth and progress of technology have shaped large and compact urban settlements. Existence of huge transportation systems and developed urban infrastructures are among the most important properties of modern cities. In spite of prompt transit and facilitated daily activities, development of transportation systems causes many problems, including traffic, air and n...

متن کامل

Rainfall-runoff modelling using artificial neural networks (ANNs): modelling and understanding

In recent years, artificial neural networks (ANNs) have become one of the most promising tools in order to model complex hydrological processes such as the rainfall-runoff process. In many studies, ANNs have demonstrated superior results compared to alternative methods. ANNs are able to map underlying relationship between input and output data without prior understanding of the process under in...

متن کامل

Evaluation of the Effective Electrospinning Parameters Controlling Kefiran Nanofibers Diameter Using Modelling Artificial Neural Networks

Objective(s): This paper investigates the validity of Artificial Neural Networks (ANN) model in the prediction of electrospun kefiran nanofibers diameter using 4 effective parameters involved in electrospinning process. Polymer concentration, applied voltage, flow rate and nozzle to collector distance were used as variable parameters to design various sets of electrospinning ex...

متن کامل

An Evaluation of Mahalanobis-Taguchi System and Neural Network for Multivariate Pattern Recognition

The Mahalanobis-Taguchi System is a diagnosis and predictive method for analyzing patterns in multivariate cases. The goal of this study is to compare the ability of the Mahalanobis- Taguchi System and a neural-network to discriminate using small data sets. We examine the discriminant ability as a function of data set size using an application area where reliable data is publicly available. The...

متن کامل

A Robust Feedforward Active Noise Control System with a Variable Step-Size FxLMS Algorithm: Designing a New Online Secondary Path Modelling Method

Several approaches have been introduced in literature for active noise control (ANC)systems. Since Filtered-x-Least Mean Square (FxLMS) algorithm appears to be the best choice as acontroller filter. Researchers tend to improve performance of ANC systems by enhancing andmodifying this algorithm. This paper proposes a new version of FxLMS algorithm. In many ANCapplications an online secondary pat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2015